Let r be the radius of the circle and θ be the sectorial angle of a sector of it. Then, Perimeter =2r+rθ=k (constant) [given] ⇒r=2+θk
Let A be the area of the sector, then A=21r2θ=2k2⋅(θ+2)2θ
On differentiating both sides, w.r.t. θ , we get dθdA=2k2{(θ+2)4(θ+2)2−2θ(θ+2)} =2k2(θ+2)3(2−θ)
For maximum, put dθdA=0 ⇒θ=2
Now, dθ2d2A=2k2[(θ+2)42×(−3)−[(θ+2)3]2(θ+2)3×1−θ×3(θ+2)2] =2k2[(θ+2)4−6−(θ+2)4θ+2−3θ] =2−k2[(θ+2)46+(θ+2)42−θ] At θ=2 , dθ2d2A=2k2[446+0]=256−3k2<0
Hence, A is maximum, when θ=2o