Let length of sector is land radius of sector is r. ∴l=360∘2πrθ
Perimeter of sector P=360∘2πrθ+2r ⇒P=(360∘2πθ+2)r ⇒r=(360∘2πθ+2)P ∵A=360∘πr2θ A=360∘π[(360∘2πθ+2)2P2]θ A=360∘πP2[(360∘2πθ+2)2θ] dθdA=360∘πP2[(360∘2πθ+2)4(360∘2πθ+2)2−θ⋅2(360∘2πθ+2)360∘π]
Put dθdA=0, for maxima or minima (360∘2πθ+2)−360∘4θπ=0 ⇒180∘πθ=2 ⇒θ=π2×180∘ =2 rad
Thus Area of sector will be maximum, if sectorial angle is of 2 rad.