The given equation is log(dxdy)=3x+4y ⇒dxdy=e3x+4y ⇒dxdy=e3x⋅e4y ⇒e−4y⋅dy=e3x⋅dx
Integrating both sides, we get ∫e−4y⋅dy=∫e3x⋅dx ⇒−4e−4y=3e3x+C ⇒4e−4y+3e3x+C=0 ⇒3e−4y+4e3x+12C=0...(i)
Now it is given that when x=0,y=0. ∴3+4+12C=0 ⇒C=−127 ∴ From (i),4e3x+3e−4y+12(−127)=0 ⇒4e3x+3e−4y=7,
which is the required solution.