Q.
The particular solution of the differential equation dxdy+ycotx=2x+x2cotx, such that y(π/2)=0 is
1937
212
J & K CETJ & K CET 2013Differential Equations
Report Error
Solution:
Given, dxdy+ycotx=2x+x2cotx IF=e∫cotxdx=elogsinx=sinx ∴ Complete solution is y.sinx=∫sinx(2x+x2cotx)dx+C ⇒y.sinx=2∫xsinxdx+∫x2cosxdx+C ⇒y.sinx=2∫xsinxdx+x2sinx−2∫xsinxdx+C ⇒ysinx=x2sinx+C ..(i) ∵y(2π)=0 i.e, at x=2π,y=0
Then from Eq. (i). 0.sin2π=(2π)2sin2π+C ⇒C=−4π2
Putting the value of C in Eq. (i), we get y.sinx=x2sinx−4π2. ⇒y=x2−4sinxπ2 (sinx=0)