Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The parametric form of equation of the circle x2 + y2 - 6x + 2y - 28 = 0 is
Q. The parametric form of equation of the circle
x
2
+
y
2
−
6
x
+
2
y
−
28
=
0
is
1835
213
Conic Sections
Report Error
A
x
=
−
3
+
38
cos
θ
,
y
=
−
1
+
38
s
in
θ
17%
B
x
28
cos
θ
,
y
=
28
s
in
θ
25%
C
x
=
−
3
−
38
cos
θ
,
y
=
1
+
38
s
in
θ
33%
D
x
=
3
+
38
cos
θ
,
y
=
−
1
+
38
s
in
θ
25%
Solution:
E
q
n
of circle is
x
2
+
y
2
−
6
x
+
2
y
−
28
=
0
2
g
=
−
6
⇒
g
=
−
3
and
2
f
=
2
⇒
f
=
1
c
=
−
28
∴
r
=
g
2
+
f
2
−
c
=
9
+
1
+
28
=
38
centre
:=
(
−
g
,
−
f
)
=
(
3
,
−
1
)
=
(
h
,
k
)
∴
x
=
h
+
r
.
cos
θ
, and
y
=
k
+
rs
in
θ
⇒
x
=
3
+
38
cos
θ
,
y
=
−
1
+
38
s
in
θ