=∣∣1cos(p−d)xsin(p−d)acospxsinpxa2cos(p+d)xsin(p+d)x∣∣
Applying C1→Cx+C3 =∣∣1+a2cos(p−d)x+cos(p+d)xsin(p−d)+sin(p+d)xacospxsinpxa2cos(p+d)xsin(p+d)x∣∣ ⇒Δ=∣∣1+a22cospxcosdx2sinpxsindxacospxsinpxa2cos(p+d)xsin(p+d)x∣∣
Applying C1→C1−2cosdxC2 ⇒Δ=∣∣1+a2−2acosdx00acospxsinpxa2cos(p+d)xsin(p+d)x∣∣ ⇒Δ=(1+a2−2acosdx)[sin(p+d)xcospx−sinpxcos(p+d)x] ⇒Δ=(1+a2−2acosdx)sindx
which is independent of p.