Q.
The parabolas C1:y2=4a(x−a) and C2:y2=−4a(x−k) intersect at two distinct points A and B. If the slope of the tangent at A on C1 is same as the slope of the normal at B on C2 , then the value of k is equal to
2386
223
NTA AbhyasNTA Abhyas 2020Conic Sections
Report Error
Solution:
Let, A=(p,q)&B=(p,−q)
Now q2=4a(p−a)&q2=−4a(p−k)… (i) ⇒p−a=−p+k⇒p=2a+k…
Now for C1,dxdy=y2a dxdy](p,q)=q2a&−dydx](p,−q)=2aq ⇒q2a=2aq⇒q2=4a2… (iii)
Putting values from (ii) \& (iii) in equation (i), we get, 4a2=4a(2a+k−a)⇒a=2k−a⇒k=3a