Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The parabolas: a x2+2 b x+c y=0 and d x2+2 e x+f y=0 intersect on the line y=1. If a, b, c, d, e, f are positive real numbers and a, b, c are in G.P., then
Q. The parabolas :
a
x
2
+
2
b
x
+
cy
=
0
and
d
x
2
+
2
e
x
+
f
y
=
0
intersect on the line
y
=
1
. If
a
,
b
,
c
,
d
,
e
,
f
are positive real numbers and
a
,
b
,
c
are in G.P., then
1701
132
JEE Main
JEE Main 2023
Sequences and Series
Report Error
A
a
d
,
b
e
,
c
f
are in G.P.
B
d
,
e
,
f
are in A.P.
C
d
,
e
,
f
are in G.P.
D
a
d
,
b
e
,
c
f
are in A.P.
Solution:
a
x
2
+
2
b
x
+
c
=
0
⇒
a
x
2
+
2
a
c
x
+
c
=
0
(
∵
b
2
=
a
c
)
⇒
(
x
a
+
c
)
2
=
0
x
2
−
a
c
……
(
1
)
Now,
d
x
2
+
2
e
x
+
f
=
0
⇒
d
(
a
c
)
+
2
e
[
−
a
c
]
+
f
=
0
⇒
a
d
c
+
f
=
2
e
a
c
⇒
a
d
+
c
f
=
2
e
a
c
1
⇒
a
d
+
c
f
=
b
2
e
[
as
b
=
a
e
]
∴
a
d
,
b
e
,
c
f
are in A.P.