Tk=(k2+1)2−k2k=(k2+1+k)(k2+1−k)k =21((k2+1+k)(k2+1−k)(k2+1+k)−(k2+1−k))=21(k2+1−k1−k2+1+k1) =21(k=1∑nk2+1−k1−k2+1+k1) =21(11−31) +21(31−71) +21(n2+1−n1−n2+1+n1) =21(1−n2+1+n1)=21(n2+1+nn2+1+n−1)=2(n2+n+1)n(n+1) put n=100 to get 101015050⇒N=5050