Q.
The numbers a,b,c in order are three consecutive terms of an A.P. such that a+b+c=60. If (a−2),b,(c+3) in order are the three consecutive terms of a G.P., then possible value (s) of (a2+b2+c2) is/are
Given 2b=a+c and a+b+c=60 3b=60⇒b=20 ∴c=40−a now a−2,b,c+3 in G.P. a−2,20,43−a in G.P. (a−2)(43−a)=400⇒45a−86−a2=400⇒a2−45a+486=0 a2−27a−18a+486=0⇒a(a−27)−18(a−27)=0 a=27 or a=18 a=27,c=13 a=18,c=22 ∴27,20,13 or 18,20,22 a2+b2+c2=729+400+169=1298⇒ (D) a2+b2+c2=324+400+484=1208⇒ (B)