In terms of prime factors 100! can be written as 2a⋅3b⋅5c⋅7d⋯
Now, E2(100!) =[2100]+[22100]+[23100]+[24100]+[25100]+[26100] =50+25+12+6+3+1=97
and, E5(100!)=[5100]+[52100] =20+4=24 100!=297⋅3b⋅524⋅7d… =273⋅3b⋅(2×5)24⋅7d… =273⋅3b⋅(10)24⋅7d…
Hence, number of zeros at the end of 100! is 24.