Q.
The number of ways to distribute 30 identical candies among four children C1,C2,C3 and C4 so that C2 receives atleast 4 and atmost 7 candies, C3 receives atleast 2 and atmost 6 candies, is equal to
t1+t2+t3+t4=30
Coefficient of x30 in (1+x+x2+…+x30)2 (x4+x5+x6+x7)(x2+x3+x4+x5+x6) x6(1−x1−x31)2(1+x+x2+x3)(1+x+x2+x3+x4) x6(1−x31)2(1−x4)(1−x5)(1−x)4 x6(1−x4−x5+x9)(1+x62−2x31(1−x)−4) x6(1−x4−x5+x9)(1−x)−4
Coefficient of xn in (1−x)−r is n+r−1Cr−1 ⇒27C3−23C3−22C3+18C3 2925−1771−1540+816 =430
OR x2∈[4,7],x3∈[2,6] ⇒t1+t2+t3+t4=24
total ways = 24+4−1C4−1−20+4−1C4−1−19+4−1C4−1+15+4−1C4−1 =27C3−23C3−22C3+18C3=430