Q.
The number of values of x satisfying the equation 2(log516)(log4x)+(logx25)+x(log54)+5+x5=0 is
221
116
Continuity and Differentiability
Report Error
Solution:
2log516⋅log4x+logx25+5x+xlog34+5+x5=0 22log54⋅log4x+xlog25+5x+xlog54⋅x5+x5=0 22log5x2xlog25+5x+x2log52⋅x5+x5=0 (2log5x)2⋅5x+5x+(2log5x)2⋅x5+x5=0 5x[(2log5x)2+1]+x5[(2log5x)2+1]=0 (5x+x5)[(2log5x)2+1]=0 5x+x5=0(2log5x)2+1=0 This possible only when x will be-ve No solution while according to question x≥2 ∴ number of values of x= zero