3sin2x−7sinx+2=0 ⇒3sin2x−6sinx−sinx+2=0 ⇒3sinx(sinx−2)−(sinx−2)=0 ⇒(3sinx−1)(sinx−2)=0 ⇒sinx=31 or 2 ⇒sinx=31 (∵sinx=2)
Let sin−131=α,0<α<2π are the solutions in [0,5π].
Then α,π−α,2π+α,3π−α,4π+α,5π−α are the solutions in [0,5π]. ∴ Required number of solutions =6