Since, the system of linear equations has, non-trivial solution then determinant of coefficient matrix =0 i.e.,∣∣sin3θ1−1cos2θ34277∣∣=0
sin 3θ(21−28)−cos 2θ(7+7)+2(4+3)=0
sin 3θ+2 cos 2θ−2=0 3 sin θ−4 sin 3θ+2−4 sin 2θ−2=0 4 sin3θ+4 sin 2θ−3 sinθ=0
sinθ(4sin2θ+4sinθ−3)=0
sinθ(4sin2θ+6sinθ−2sinθ−3)=0
sin θ[2sinθ(2sinθ−1)+3(2sinθ−1)]=0
sin θ(2sinθ−1)(2sinθ+3)=0
sin θ=0sinθ=21 (∵ sin θ=−23) θ=6π,65π
Hence, for two values of θ, system of equations has non-trivial solution