Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of values of r ∈ p, q, ∼ p, ∼ q for which ((p ∧ q) ⇒(r ∨ q)) ∧((p ∧ r) ⇒ q) is a tautology, is :
Q. The number of values of
r
∈
{
p
,
q
,
∼
p
,
∼
q
}
for which
((
p
∧
q
)
⇒
(
r
∨
q
))
∧
((
p
∧
r
)
⇒
q
)
is a tautology, is :
440
129
JEE Main
JEE Main 2023
Mathematical Reasoning
Report Error
A
1
B
2
C
4
D
3
Solution:
((
p
∧
q
)
⇒
(
r
∨
q
))
∧
((
p
∧
r
)
⇒
q
)
We know,
p
⇒
q
is equivalent to
∼
p
∨
q
(
∼
(
p
∧
q
)
∨
(
r
∨
q
))
∧
(
∼
(
p
∧
r
))
∨
q
))
⇒
(
∼
p
∨
∼
q
∨
r
∨
q
)
∧
(
∼
p
∨
∼
r
∨
q
)
⇒
(
∼
p
∨
r
∨
t
)
∧
(
∼
p
∨
∼
r
∨
q
)
⇒
(
t
)
∧
(
∼
p
∨
∼
r
∨
q
)
For this to be tautology,
(
∼
p
∨
∼
r
∨
q
)
must be always true which follows for
r
=∼
p
or
r
=
q
.