(k+1)x+8y=4k kx+(k+3)y=3k−1
for these equation to have infinite solution D=D1=D2=0 D=∣∣k+1k8k+3∣∣=k2+4k+3−8k =k2−4k+3=0 ∴k=3 or k=1 ...(1) D1=∣∣4k3k−18k+3∣∣=4k2+12k−24k+8 =4k2−12k+8=0 ∴k2−3k+2=0 k=2 or k=1 ...(2) D2=∣∣k+1k4k3k−1∣∣=3k2−k+3k−1−4k2=0 k2−2k+1=0 ⇒k=1 ...(3)
From (1), (2), (3) k=1 ∴ Only one value of k
Alternatively: Lines must be identical
i.e. kk+1=k+38=3k−14k ⇒k=1