Q.
The number of values of k4 for which the following system of equations has at least three solutions 8x+16y+8z=25,x+y+z=k and 3x+y+3z=k2, is
1949
198
J & K CETJ & K CET 2015Determinants
Report Error
Solution:
Given system of equation is 8x+16y+8z=25x+y+z=k and 3x+y+3z=k2 It can be written as, AX=B Where, A=⎣⎡8131611813⎦⎤,B=⎣⎡25kk2⎦⎤,X=⎣⎡xyz⎦⎤ Cofactors of A are A11=(−1)1+1∣∣1113∣∣=(−1)2(3−1)=2A12=(−1)1+2∣∣1313∣∣=(−1)3(3−3)=0A13=(−1)1+3∣∣1311∣∣=(−1)4(1−3)=−2A21=(−1)2+1∣∣16183∣∣=(−1)3(48−8)=−40A22=(−1)2+2∣∣8383∣∣=(−1)4(24−24)=0A23=(−1)2+3∣∣83161∣∣=(−1)5(8−48)=40A31=(−1)3+1∣∣16181∣∣=(−1)4(16−8)=8A32=(−1)3+2∣∣8181∣∣=(−1)5(8−8)=0A33=(−1)3+3∣∣81161∣∣=(−1)6(8−16)=−8 ∴adj(A)=⎣⎡A11A21A31A12A22A32A13A23A33⎦⎤T ⇒adj(A)=⎣⎡2−408000−240−8⎦⎤T ⇒adj(A)=⎣⎡20−2−4004080−8⎦⎤
Now, (adjA)B=⎣⎡20−2−4004080−8⎦⎤⎣⎡25kk2⎦⎤(adjA)B=⎣⎡50−40k+8k20+0+0−50+40k−8k2⎦⎤ For atleast three solutions, (adjA)B=0 ⇒⎣⎡50−40k+8k20−50+40k−8k2⎦⎤=0 ⇒⎣⎡50−40k+8k20−50+40k−8k2⎦⎤=⎣⎡000⎦⎤ ⇒8k2−40k+50=0 ⇒2(k2−20k+25)=0 ⇒k=2×1−(−20)±(−20)2−4×1×25 ⇒k=220±400−100 ⇒k=220±300 ⇒k=220±100×3 ⇒k=220±103 ⇒k=10±53 ⇒k=10+53,10−53 The number of values of k=2