Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of triplets (a , b , c) of positive integers satisfying the equation | a3+1 a2b a2c ab2 b3+1 b2c ac2 bc2 c3+1 |=30 is equal to
Q. The number of triplets
(
a
,
b
,
c
)
of positive integers satisfying the equation
∣
∣
a
3
+
1
a
b
2
a
c
2
a
2
b
b
3
+
1
b
c
2
a
2
c
b
2
c
c
3
+
1
∣
∣
=
30
is equal to
2004
194
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
A
3
51%
B
6
9%
C
9
20%
D
12
20%
Solution:
ab
c
ab
c
∣
∣
a
3
+
1
a
b
2
a
c
2
a
2
b
b
3
+
1
b
c
2
a
2
c
b
2
c
c
3
+
1
∣
∣
=
30
⇒
ab
c
∣
∣
a
2
+
a
1
b
2
c
2
a
2
b
2
+
b
1
c
2
a
2
b
2
c
2
+
c
1
∣
∣
=
30
⇒
∣
∣
a
3
+
1
b
3
c
3
a
3
b
3
+
1
c
3
a
3
b
3
c
3
+
1
∣
∣
=
30
Apply
R
1
↔
R
1
+
R
2
+
R
3
⇒
(
a
3
+
b
3
+
c
3
+
1
)
∣
∣
1
b
3
c
3
1
b
3
+
1
c
3
1
b
3
c
3
+
1
∣
∣
=
30
Apply
C
2
↔
C
2
−
C
1
,
C
3
↔
C
3
−
C
1
⇒
(
a
3
+
b
3
+
c
3
+
1
)
∣
∣
1
b
3
c
3
0
1
0
0
0
1
∣
∣
=
30
⇒
a
3
+
b
3
+
c
3
+
1
=
30
⇒
a
3
+
b
3
+
c
3
=
29
(
a
,
b
,
c
)
≡
(
1
,
1
,
3
)
or
(
1
,
3
,
1
)
or
(
3
,
1
,
1
)