Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of triples (x, y, z) of real number satisfying the equation x4 + y 4 + z4 + 1 = 4xyz is
Q. The number of triples
(
x
,
y
,
z
)
of real number satisfying the equation
x
4
+
y
4
+
z
4
+
1
=
4
x
yz
is
1289
238
KVPY
KVPY 2016
Report Error
A
0
B
4
C
8
D
more than 8
Solution:
We have,
x
4
+
y
4
+
z
4
+
1
=
4
x
yz
A
M
≥
GM
∴
4
x
4
+
y
4
+
z
4
+
1
≥
(
x
4
⋅
y
4
⋅
z
4
⋅
1
)
1/4
⇒
4
4
x
yz
≥
∣
x
yz
∣
⇒
x
yz
>
0
It is possible
(
1
,
1
,
1
)
(
−
1
,
−
1
,
1
)
(
−
1
,
1
,
−
1
)
,
(
1
,
−
1
,
1
)
So number of triplet
(
x
,
y
,
z
)
=
4