Given, curve is y2(x−a)=x2(x+a)
Apply log on both sides log{y2(x−a}=log{x2(x+a)} ⇒2logy+log(x−a)=2logx+log(x+a)
Differentiating both sides w.r.t. x, we get ⇒y2⋅dxdy+x−a1 =x2+x+a1 ⇒y2dxdy =x2+x+a1−x−a1 =x(x+a)(x−a)2(x+a)(x−a)+x(x−a)−x(x+a) =x(x−a)(x+a)2(x2−a2)+x2−ax−x2−ax ⇒y2dxdy =x(x−a)(x+a)2x2−2a2−2ax ⇒dxdy=x(x−a)(x+a)x2−a2−ax⋅x⋅x−ax+a
At dxdy=0 ∴x2−a2−ax=0
Here, p=a2+4a2>0
So. it has two real roots.