The given equation sin(πsin2θ)+sin(πcos2θ) =2cos(2πcosθ) ⇒2sin(2π(sin2θ+cos2θ)) cos(2π(sin2θ−cos2θ))=2cos(2πcosθ) ⇒cos(2πcos2θ) =cos(2πcosθ) ⇒2πcos2θ=2nπ±2πcosθ,n∈ Integers ⇒cos2θ=4n±cosθ,n∈I Case I
If cos2θ=4n+cosθ ⇒cos2θ−cosθ=4n
The above equation will hold only if n=0,
so cos2θ=cosθ ⇒2cos2θ−cosθ−1=0 ⇒cosθ=1,−21 ⇒θ=2kπ,2kπ±32π,k∈I ∵θ∈[0,2π]
So, θ=0,2π,32π,34π Case II
If cos2θ=4n−cosθ ⇒cos2θ+cosθ=4n
The above equation will hold only if n=0,
so cos2θ+cosθ=0 ⇒2cos2θ+cosθ−1=0 ⇒cosθ=−1,21 ⇒θ=(2m+1)π,2mπ±3π,m∈I ∵θ∈[0,2π]
So, θ=π,3π,35π ∴ There are total 7 solutions