Given, tanx+secx=2cosx cosx(1+sinx)=2cosx 1+sinx=2cos2x 1+sinx=2(1−sin2x) 1+sinx=2−2sin2x 2sin2x+sinx−1=0 2sin2x+2sinx−sinx−1=0 2sinx(sinx+1)−1(sinx+1)=0 (sinx+1)(2sinx−1)=0<br>sinx=−1,12 sinx=sin270∘,sin30∘,sin150∘ ⇒x=π/6,5π/6,3π/2
Hence there are three solutions of given equation in [0,2π]