Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solutions of the equation tan2x-sec10x+1=0 for x∈ (0,20) is equal to
Q. The number of solutions of the equation
t
a
n
2
x
−
se
c
10
x
+
1
=
0
for
x
∈
(
0
,
20
)
is equal to
2264
175
NTA Abhyas
NTA Abhyas 2020
Report Error
Answer:
6
Solution:
se
c
2
x
−
se
c
10
x
=
0
se
c
2
x
(
1
−
se
c
8
x
)
=
0
1
−
se
c
8
x
=
0
as
se
c
2
x
≥
1
⇒
se
c
8
x
=
1
⇒
co
s
8
x
=
1
⇒
cos
x
=
±
1
⇒
x
=
nπ
,
∀
n
∈
I
⇒
x
=
{
π
,
2
π
,
3
π
,
4
π
,
5
π
,
6
π
}
∈
(
0
,
20
)
So, the required number of roots
=
6