Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solutions of the equation log (x+1)(2 x2+7 x+5)+ log (2 x+5)(x+1)2-4=0 x > 0 is
Q. The number of solutions of the equation
lo
g
(
x
+
1
)
(
2
x
2
+
7
x
+
5
)
+
lo
g
(
2
x
+
5
)
(
x
+
1
)
2
−
4
=
0
x
>
0
is
389
147
JEE Main
JEE Main 2021
Complex Numbers and Quadratic Equations
Report Error
Answer:
1
Solution:
lo
g
(
x
+
1
)
(
2
x
2
+
7
x
+
5
)
+
lo
g
(
2
x
+
5
)
(
x
+
1
)
2
−
4
=
0
lo
g
(
x
+
1
)
(
2
x
+
5
)
(
x
+
1
)
+
2
lo
g
(
2
x
+
5
)
(
x
+
1
)
=
4
lo
g
(
x
+
1
)
(
2
x
+
5
)
+
1
+
2
lo
g
(
2
x
+
5
)
(
x
+
1
)
=
4
Put
lo
g
(
x
+
1
)
(
2
x
+
5
)
=
t
t
+
t
2
=
3
⇒
t
2
−
3
t
+
2
=
0
t
=
1
,
2
lo
g
(
x
+
1
)
(
2
x
+
5
)
=
1
&
lo
g
(
x
+
1
)
(
2
x
+
5
)
=
2
x
+
1
=
2
x
+
3
&
2
x
+
5
=
(
x
+
1
)
2
x
=
−
4
( rejected)
x
2
=
4
⇒
x
=
2
,
−
2
( rejected)
So,
x
=
2
No. of solution
=
1