We have, 4cos2θ⋅cos3θ=secθ,( where 0<θ<π) ⇒2(2cos2θ⋅cos3θ)=cosθ1 ⇒2[cos5θ+cos(−θ)]=cosθ1 [∵2cosAcosB=cos(A+B)+cos(A−B)] ⇒2[cos5θ+cosθ]=cosθ1 [∵cos(−θ)=cosθ] ⇒2cos5θ⋅cosθ+2cos2θ=1 ⇒(cos6θ+cos4θ)+(2cos2θ−1)=0 ⇒cos6θ+cos4θ+cos2θ=0 [∵2cos2θ−1=cos2θ] ⇒2cos4θ⋅cos2θ+cos4θ=0 ⇒cos4θ(2cos2θ+1)=0 ⇒cos4θ=0 and 2cos2θ+1=0 ⇒4θ=(2n+1)2π,cos2θ=−21 ⇒θ=(2n+1)8π,2θ=2π/3 or 34π ⇒θ=8π,83π,85π,87π,3π,32π
So, number of solution of given equation is 6 .