13−18tanx=6tanx−3−2π<x<2π (given) ⇒13−18tanx=36tan2x+9−36tanx ⇒36tan2x−18tanx−4=0 ⇒36tan2x−24tanx+6tanx−4=0 ⇒6tanx(6tanx+1)−4(6tanx+1)=0 tanx=32
or tanx=−1/6 (not possible)
Let tanα=2/3
then tanx=tanα
or x=tan(2/3),π+tan−1(2/3),tan−1(2/3)−π,tan−1(2/3)−2π