Given: sin3x=cos2x ⇒3sinx−4sin3x=1−2sin2x ⇒4sin3x−2sin2x−3sinx+1=0 ⇒4sin2x(sinx−1)+2sinx(sinx−1)−(sinx−1)=0 ⇒(sinx−1)(4sin2x+2sinx−1) ⇒sinx=1 or 4sin2x+2sinx−1=0 4sin2x+2sinx−1sinx=2.4−2±4+16 4sin2x+2sinx−1sinx=4−1±5
We know that, sinx>0∀x∈(π/2,π) and sinx=1 sinx=45−1
Therefore, number of solution is 1 .