Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solutions of log4 (x+1) = log2 (x-3) is
Q. The number of solutions of
l
o
g
4
(
x
+
1
)
=
l
o
g
2
(
x
−
3
)
is
1264
209
UPSEE
UPSEE 2008
Report Error
A
3
B
1
C
2
D
0
Solution:
lo
g
4
(
x
−
1
)
=
lo
g
2
(
x
−
3
)
⇒
lo
g
4
(
x
−
1
)
=
2
lo
g
4
(
x
−
3
)
⇒
lo
g
4
(
x
−
1
)
=
lo
g
4
(
x
−
3
)
2
⇒
x
−
1
=
x
2
+
9
−
6
x
⇒
x
2
−
7
x
+
10
=
0
⇒
(
x
−
5
)
(
x
−
2
)
=
0
⇒
x
=
5
or
2
Hence,
x
=
5
{
∵
x
=
2
makes
lo
g
(
x
−
3
)
undefined
}
∴
Number of solution is
1.