The number of solutions in the interval [0,π] of the equation sin3xcos3x+sin3xcos3x=0 is
equal toThe given equation can be written as (43sinx−sin3x)cos3x+sin3x(43cosx+cos3x) sinxcos3x+cosxsin3x=0
So, sin(x+3x)=0⇒sin4x=0 ⇒x=4nπ,n∈Z. ⇒x=0,4π,2π,43π,π ⇒5solutions