Q.
The number of roots of the equation sin−1x−cos−1x=sin−1(5x−3) is/are
1840
210
NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions
Report Error
Solution:
sin−1x−cos−1x=sin−1(5x−3) ⇒2π−cos−1x−cos−1x=2π−cos−1(5x−3) ⇒2cos−1x=cos−1(5x−3).Alsox∈[−1,1] … (1) ⇒cos−1(2x2−1)=cos−1(5x−3) and (5x−3)∈[−1,1], i.e., −1≤5x−3≤1 ⇒2x2−1=5x−3,hence,x∈[52,54] ⇒2x2−5x+2=0⇒x=2 or 21
but, x=2 does not satisfy the equation (1)
Hence, the given equation has only one root