Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of roots of the equation sin- 1x-cos- 1x=sin- 1(5 x - 3) is/are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of roots of the equation $sin^{- 1}x-cos^{- 1}x=sin^{- 1}\left(5 x - 3\right)$ is/are
NTA Abhyas
NTA Abhyas 2020
Inverse Trigonometric Functions
A
$3$
0%
B
$1$
50%
C
$2$
50%
D
$0$
0%
Solution:
$sin^{- 1}x-cos^{- 1}x=sin^{- 1}\left(5 x - 3\right)$
$\Rightarrow \frac{\pi }{2}-cos^{- 1}x-cos^{- 1}x=\frac{\pi }{2}-cos^{- 1}\left(5 x - 3\right)$
$\Rightarrow 2cos^{- 1}x=cos^{- 1}\left(5 x - 3\right). \, Also \, x\in \left[- 1,1\right]$ … $\left(1\right)$
$\Rightarrow cos^{- 1}\left(2 x^{2} - 1\right)=cos^{- 1}\left(5 x - 3\right)$ and $\left(5 x - 3\right)\in \left[- 1,1\right],$ i.e., $-1\leq 5x-3\leq 1$
$\Rightarrow 2x^{2}-1=5x-3, \, hence, \, x\in \left[\frac{2}{5} , \frac{4}{5}\right]$
$\Rightarrow 2x^{2}-5x+2=0\Rightarrow x=2$ or $\frac{1}{2}$
but, $x=2$ does not satisfy the equation $\left(1\right)$
Hence, the given equation has only one root