Q.
The number of real values of m for which A∪B has exactly three distinct elements. Given that A={x:x2+(m−1)x−2(m+1)=0,x∈R} B={x:(m−1)x2+mx+1=0,x∈R}
791
81
Complex Numbers and Quadratic Equations
Report Error
Answer: 7
Solution:
A={x:(x−2)(x+m+1)=0,x∈R} B={x:(m−1)x2+mx+1=0,x∈R} Case-I : When m−1=0m=1 A={2,−2} and B={−1} ∴A∪B={2,−2,−1}⇒ exactly 3 elements ∴m=1 Case-II : When m=1 A={2,−m−1},B={−1,m−1−1} 2=−m−1⇒m=−3 A={2},B{−1,41} ∴m=−3 2=m−1−1⇒m=21 A={2,−23},B={−1,2} ∴m=21 −m−1=m−1−1⇒m2−1=1 ∴m=±2 ∴−m−1=−1⇒m=0 −1=m−1−1⇒m−1=1 ∴m=2
Number of values of m=7.