Given : Equations of ellipses 3x2+5y2=32..(1)
& 25x2+9y2=450...(2)
Tangents to the ellipse (1) & (2) are passing through the point (3, 5) ∴3(3)2+5(5)2−32=27+75−32>0
So the given point lies outsides the ellipse. Hence, two real tangents can be drawn from the point to the ellipse
& 25(3)2+9(5)2−450=225+225−450=0 ∴ The point lie on the ellipse. Hence one
real tangent can be drawn. ∴ No. of real tangents = 3