Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of real solutions of the equation 1+ |ex-1|=ex(ex-2) is
Q. The number of real solutions of the equation
1
+
∣
e
x
−
1
∣
=
e
x
(
e
x
−
2
)
is
670
174
Manipal
Manipal 2019
Report Error
A
1
B
2
C
4
D
8
Solution:
We have,
1
+
∣
e
x
−
1
∣
=
e
x
(
e
x
−
2
)
1
+
1
+
∣
e
x
−
1
∣
=
e
2
x
−
2
e
x
+
1
=
(
e
x
−
1
)
2
1
+
1
+
∣
e
x
−
1
∣
=
∣
e
x
−
1
∣
2
Let
(
e
x
−
1
)
=
y
, then
y
2
−
y
−
2
=
0
⇒
y
=
2
,
−
1
∣
e
x
−
1
∣
=
2
⇒
e
x
−
1
=
±
2
⇒
e
x
=
1
±
2
⇒
e
x
=
3
,
−
1
Or
e
x
=
3
⇒
x
=
lo
g
e
3
∴
There is one real solution of the equation.