Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of positive roots of the equation |x&3&7 2&x&2 7&6&x|=0 is
Q. The number of positive roots of the equation
∣
∣
x
2
7
3
x
6
7
2
x
∣
∣
=
0
is
2180
234
AMU
AMU 2013
Determinants
Report Error
A
1
B
2
C
3
D
0
Solution:
Given,
∣
∣
x
2
7
3
x
6
7
2
x
∣
∣
=
0
⇒
x
(
x
2
−
12
)
−
3
(
2
x
−
14
)
+
7
(
12
−
7
x
)
=
0
⇒
x
3
−
12
x
−
6
x
+
42
+
84
−
49
x
=
0
⇒
x
3
−
67
x
+
126
=
0
⇒
(
x
−
2
)
(
x
2
+
2
x
−
63
)
=
0
⇒
(
x
−
2
)
(
x
2
+
9
x
−
7
x
−
63
)
=
0
⇒
(
x
−
2
)
{
x
(
x
+
9
)
−
7
(
x
+
9
)}
=
0
⇒
(
x
−
2
)
(
x
+
9
)
(
x
−
7
)
=
0
⇒
x
=
2
,
7
,
−
9
Hence, number of positive roots is
2
.