Let w be a non-negative integer such that 3x+y+z+w=30
Let a=x−1,b=y−1,c=z−1,d=w,
then 3a+b+c+d=25,
where a,b,c,d≥0(1)
Clearly, 0≤a≤8.
If a=k, then b+c+d=25−3k(2)
Number of non-negative integral solutions of equation (2) =n+r−1Cr=3+25−3k−1C25−3k =27−3kC25−3k=27−3kC2 =2(27−3k)(26−3k) =23(3k2−53k−234) ∴ Required number =23k=0∑8(3k2−53k+234) =23[3⋅68×9×17−5328×9+234×9]=1215