Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of points of non-differentiability of the function f(.x.)=max(.sinx,2x.)+[.max(.sinx,2x.)]. (where [⋅ ] denotes greatest integer function) in (.0,2π .) is
Q. The number of points of non-differentiability of the function
f
(
x
)
=
ma
x
(
s
in
x
,
2
x
)
+
[
ma
x
(
s
in
x
,
2
x
)
]
(where
[
⋅
]
denotes greatest integer function) in
(
0
,
2
π
)
is
3427
179
NTA Abhyas
NTA Abhyas 2022
Report Error
A
12
B
14
C
17
D
18
Solution:
ma
x
(
s
in
x
,
2
x
)
=
2
x
∴
y
=
2
x
+
[
2
x
]
is non differentiable at
12
points