Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of ordered pairs (x, y), where x, y ∈ N for which 4, x, y are in H.P. , is equal to
Q. The number of ordered pairs
(
x
,
y
)
,
where
x
,
y
∈
N
for which
4
,
x
,
y
are in
H
.
P
.
,
is equal to
1156
197
Sequences and Series
Report Error
A
1
0%
B
2
0%
C
3
100%
D
4
0%
Solution:
4
,
x
,
y
are in
H
.
P
.
x
2
=
4
1
+
y
1
⇒
x
2
−
4
1
=
y
1
⇒
4
x
8
−
x
=
y
1
⇒
y
=
8
−
x
4
x
=
8
−
x
4
(
8
−
(
8
−
x
))
=
8
−
x
32
−
4
8
−
x
must be a factor of
32
8
−
x
=
1
⇒
x
=
7
,
y
=
28
8
−
x
=
2
⇒
x
=
6
,
y
=
12
8
−
x
=
4
⇒
x
=
4
,
y
=
4
8
−
x
=
8
⇒
x
=
0
,
y
=
0
(Not possible)
∴
Number of ordered pairs of
(
x
,
y
)
is
3
.