Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of ordered pairs (x , y) of real numbers satisfying the system of equations sin x=sin 2 y and cos x=sin y , where 0≤ x,y≤ π , is
Q. The number of ordered pairs
(
x
,
y
)
of real numbers satisfying the system of equations
s
in
x
=
s
in
2
y
and
cos
x
=
s
in
y
, where
0
≤
x
,
y
≤
π
, is
2737
228
NTA Abhyas
NTA Abhyas 2020
Report Error
A
1
0%
B
2
100%
C
3
0%
D
4
0%
Solution:
sin
x
=
sin
2
y
and
cos
x
=
sin
y
Squaring and adding, we get,
1
=
(
2
sin
y
cos
y
)
2
+
sin
2
y
1
−
sin
2
y
=
4
sin
2
y
cos
2
y
cos
2
y
(
1
−
4
sin
2
y
)
=
0
cos
y
=
0
or
sin
y
=
±
2
1
y
=
2
π
or
6
π
or
6
5
π
y
=
2
π
⇒
x
=
0
y
=
6
π
⇒
x
=
3
π
⇒
two ordered pairs
(
0
,
2
π
)
&
(
3
π
,
6
π
)