Q. The number of normal(s) of a rectangular hyperbola which can touch its conjugate is equal to

 140  172 NTA AbhyasNTA Abhyas 2022 Report Error

Answer: 4

Solution:

In the question it is asked to find the number of normals to a rectanguar hyperbola, which is tangent to its conjugate hyperbola.
Now, let's suppose hyperbola to be . So, its conjugate hyperbola will be .
Now, normal to the hyperbola at the parametric point is given by .
Since, it is tangent to conjugate hyperbola, on solving with conjugate hyperbola , we should be getting equal roots of formed quadratic equation.
Now, on substituting the value of from equation of tangent to hyperbola we get,

Since the above equation has equal roots, .


or
or
or
Reject negative values
or
Since for we are getting two values.
Thus, total four values of exists.