In general, we know that
For the distribution equation x1+x2+x3+…+xn≤n
Let required ways =W ⇒W=⎩⎨⎧ No. of ways of distributing 1 item ⎭⎬⎫+⎩⎨⎧c No. of ways of distributing 2 items ⎭⎬⎫+…+⎩⎨⎧ No. of Ways of distributing n items ⎭⎬⎫ =1+n−1Cn−1+2+n−1Cn−1+…+n+n−1Cn−1 =nCn−1+n+1Cn−1+…+2n−1Cn−1 =(nCn−1+nCn)+n+1Cn−1+…+2n−1Cn−1−nCn ={(n+1Cn+n+1Cn−1)+…+2n−1Cn−1}−nCn
-------------------------------------------------------
-------------------------------------------------------- =(2n−1Cn+2n−1Cn−1)−nCn =2nCn−nCn ∴W=2nCn−1