Number of non-negative integral solutions of the given equation = coefficient of x20 in (1−x)−1(1−x)−1(1−x)−1(1−x4)−1. = coefficient of x20 in (1−x)−3(1−x4)−1 = coefficient of x20 in (1+3C1x+4C2x2+5C3x3+6C4x4+…+10C8x8…+14C12x12+…+18C16x16+…+22C20x20+…)×(1+x4+x8+x12+x16+x20+…) =1+6C4+10C8+14C12+18C16+22C20 =1+6C2+10C2+14C2+18C2+22C2 =1+(1.26.5)+(1.210.9)+(1.214.13)+(1.218.17)+(1.222.21) =1+15+45+91+153+231=536.