As A−1 exists, det(A)=ad−bc=0.
Also, det(−A)=det[−a−c−b−d]=ad−bc =det(A)
since det(A−1)=det(A)1,A−1=−A implies ad−bc1=ad−bc ⇒(ad−bc)2=1⇒ad−bc=±1.
If ad−bc=1, then A−1=−A
gives A−1=[d−c−ba]=[−a−c−b−d] ⇒a+d=0 ∴a(−a)−bc=1 ⇒bc=−(1+a2)⇒bc=0 and b=−c1+a2 ∴A=[ac−c(1+a2)−a], where c=0.
Thus, there are infinite number of such matrices.