A=[acbd]
Given A=A−1 ∴A2=A⋅A−1=I [acbd][acbd]=[1001] ⇒[a2+bcac+cdab+bdbc+d2]=[1001] ∴a2+bc=1....(1) ab+bd=0.....(2) ac+cd=0......(3) bc+d2=1......(4) ⇒(a+d)=0 or a−d=0
Case - I a+d=0⇒(a,d)=(−1,1),(0,0),(1,−1)
(a) (a,d)=(−1,1) ∴ from equation (1) 1+bc=1⇒bc=0 b=0C=12 possibilities c=0b=12 possibilities
but (0,0) is repeated ∴2×12=24 24−1( repeated )=23 pairs
(b) (a,d)=(1,−1)⇒ bc =0→23 pairs
(c) (a,d)=(0,0)⇒bc=1 ⇒(b,c)=(1,1)&(−1,−1),2 pairs
Case - II a=d
from (2) and (3) a=0 then b=c=0 a2=1 a=±1=d (a,d)=(1,1),(−1,−1)→2 pairs ∴ Total =23+23+2+2 =50 pairs