∣x−1∣+∣x+2∣−∣x−3∣=4 , has three absolute value expressions, thus we divide the problem into four intervals :
(i) If x<−2 then −(x−1)−(x+2)+(x−3)−=4⇒x=−8
(ii) If −2≤x<1, then
-(x−1)+1(x+2)+(x−3)=4 ⇒x=4∈/[−2,1), hence rejected
(iii) If 1≤x<3, then (x−1)+(x+2)+(x−3)=4⇒x=2
(iv) If x≥3, then (x−1)+(x+2)−(x−3)=4⇒x=0∈/[3,∞), hence rejected ∴ Solution set is {−8,2} and both are integers