Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of integers x satisfying -3x4 +det [ beginmatrix1&x&x2 1&x2&x4 1&x3&x6 endmatrix]=0 is equal to
Q. The number of integers
x
satisfying
−
3
x
4
+det
⎣
⎡
1
1
1
x
x
2
x
3
x
2
x
4
x
6
⎦
⎤
=
0
is equal to
2323
212
KVPY
KVPY 2019
Report Error
A
1
25%
B
2
50%
C
5
25%
D
8
0%
Solution:
Given,
−
3
x
4
+det
⎣
⎡
1
1
1
x
x
2
x
3
x
2
x
4
x
6
⎦
⎤
=
0
⇒
x
8
+
x
5
+
x
5
−
x
4
−
x
7
−
x
7
=
3
x
4
⇒
x
8
−
2
x
7
+
2
x
5
−
4
x
4
=
0
⇒
x
4
[
x
4
−
2
x
3
+
2
x
−
4
]
=
0
⇒
x
4
[
x
3
(
x
−
2
)
+
2
(
x
−
2
)
]
=
0
⇒
x
4
(
x
3
+
2
)
(
x
−
2
)
=
0
∴
x
is an integer, so
x
=
0
,
2