We have, 3x2−25x+n=0
Let f(x)=3x3−25x+n f′(x)=9x2−25
Put f′(x)=0 9x2−25=0 x=±35 ⇒x1=3−5,x2=35 f(x) has three real roots. ∴f(x1)f(x2)<0 ∴(3(3−5)3−25(3−5)+n) (3(35)3−25(35)+n)<0 (9−125+3125+n)(9125−3125+n)<0 (n+9250)(n−9250)<0 n∈(9−250,9250)
Hence, n∈I ∴ Total integer is 55.