Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of distinct solutions of the equation (5/4)cos2 2x + cos4 x + sin4 x + cos6 x + sin6 x = 2 in the interval [0, 2π] is
Q. The number of distinct solutions of the equation
4
5
co
s
2
2
x
+
co
s
4
x
+
s
i
n
4
x
+
co
s
6
x
+
s
i
n
6
x
=
2
in the interval
[
0
,
2
π
]
is
2568
216
JEE Advanced
JEE Advanced 2015
Report Error
Answer:
8
Solution:
4
5
co
s
2
2
x
+
1
−
2
s
i
n
2
x
co
s
2
x
+
1
−
3
s
i
n
2
x
co
s
2
x
=
2
⇒
5
co
s
2
2
x
−
5
s
i
n
2
2
x
=
0
⇒
5
cos
4
x
=
0
⇒
4
x
=
2
nπ
±
2
π
,
n
∈
I
⇒
x
=
2
nπ
±
2
π
,
n
∈
I
In the interval
[
0
,
2
π
]
Possible solutions are
8
π
,
8
3
π
,
8
5
π
,
8
7
π
,
8
9
π
,
8
11
π
,
8
13
π
,
8
15
π
So total number of solutions in
[
0
,
2
π
]
is
8
.