Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of distinct real roots of the equation log√3 tan x √ log√3 3 √3 + l o g tan x 3=-1 in interval [0 , 2 π ] is
Q. The number of distinct real roots of the equation
lo
g
3
tan
x
lo
g
3
3
3
+
l
o
g
t
a
n
x
3
=
−
1
in interval
[
0
,
2
π
]
is
52
160
NTA Abhyas
NTA Abhyas 2022
Report Error
A
0
B
2
C
4
D
6
Solution:
Put
l
o
g
3
t
an
x
=
t
,
t
<
0
t
t
2
+
3
=
−
1
Squaring on both sides
⇒
t
2
(
3
+
t
2
)
=
1
⇒
3
t
2
+
2
t
−
1
=
0
⇒
(
t
+
1
)
(
3
t
−
1
)
=
0
∴
t
=
−
1
(
t
=
3
1
is rejected since t < 0
)
So,
l
o
g
3
t
an
x
=
−
1
⇒
t
an
x
=
(
3
)
−
1
⇒
t
an
x
=
3
1
⇒
x
=
6
π
or
6
7
π